随想
∬Rf(x,y)dxdy=∬Sf(aRcos(θ),bRsin(θ))∣∣∣∣∣∂(R,θ)∂(x,y)∣∣∣∣∣dRdθ=∬Sf(aRcos(θ),bRsin(θ))∣∣∣∣∣∣∣∣∣∣∂R∂x∂R∂y∂θ∂x∂θ∂y∣∣∣∣∣∣∣∣∣∣dRdθ=∬Sf(aRcos(θ),bRsin(θ))∣∣∣∣∣∣∣∣∣∣acos(θ)bsin(θ)−aRsin(θ)bRcos(θ)∣∣∣∣∣∣∣∣∣∣dRdθ=∬Sf(aRcos(θ),bRsin(θ))∣(acos(θ))(bRcos(θ))−(−aRsin(θ))(bsin(θ))∣dRdθ=∬Sf(aRcos(θ),bRsin(θ))∣∣∣abRcos2(θ)+abRsin2(θ)∣∣∣dRdθ=∬Sf(aRcos(θ),bRsin(θ))∣∣∣abR(cos2(θ)+sin2(θ))∣∣∣dRdθ=∬Sf(aRcos(θ),bRsin(θ))abRdRdθ(假设 a,b,R≥0)
这里可以理解为坐标轴改变,即假设以(θ,R)为新坐标轴,原先的x,y就变成了∂x,∂y的新坐标,新的面积即为他们的叉乘(即二阶行列式)
当函数f(x)满足∀a≤x≤b,f(x)=f(a+b−x)(即积分区间内函数对称)时,有
∫abxf(x)dxe.g.∫0πxsin(x)dx=∫ab(a+b−x)f(x)dx=2a+b∫abf(x)dx=2π∫0πsin(x)dx