0%

心得

随想

Rf(x,y)dxdy=Sf(aRcos(θ),bRsin(θ))(x,y)(R,θ)dRdθ=Sf(aRcos(θ),bRsin(θ))xRxθyRyθdRdθ=Sf(aRcos(θ),bRsin(θ))acos(θ)aRsin(θ)bsin(θ)bRcos(θ)dRdθ=Sf(aRcos(θ),bRsin(θ))(acos(θ))(bRcos(θ))(aRsin(θ))(bsin(θ))dRdθ=Sf(aRcos(θ),bRsin(θ))abRcos2(θ)+abRsin2(θ)dRdθ=Sf(aRcos(θ),bRsin(θ))abR(cos2(θ)+sin2(θ))dRdθ=Sf(aRcos(θ),bRsin(θ))abRdRdθ(假设 a,b,R0)\begin{aligned} \iint_R f(x,y)\,\mathrm{d} x\,\mathrm{d} y &= \iint_S f(aR\cos(\theta),bR\sin(\theta))\left|\frac{\partial(x,y)}{\partial(R,\theta)}\right|\,\mathrm{d} R\,\mathrm{d} \theta \\ &= \iint_S f(aR\cos(\theta),bR\sin(\theta))\left| \begin{vmatrix} \frac{\partial x}{\partial R} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial R} & \frac{\partial y}{\partial \theta} \end{vmatrix} \right|\,\mathrm{d} R\,\mathrm{d} \theta \\ &= \iint_S f(aR\cos(\theta),bR\sin(\theta))\left| \begin{vmatrix} a\cos(\theta) & -aR\sin(\theta) \\ b\sin(\theta) & bR\cos(\theta) \end{vmatrix} \right|\,\mathrm{d} R\,\mathrm{d} \theta \\ &= \iint_S f(aR\cos(\theta),bR\sin(\theta))\left| (a\cos(\theta))(bR\cos(\theta)) - (-aR\sin(\theta))(b\sin(\theta)) \right|\,\mathrm{d} R\,\mathrm{d} \theta \\ &= \iint_S f(aR\cos(\theta),bR\sin(\theta))\left| abR\cos^2(\theta) + abR\sin^2(\theta) \right|\,\mathrm{d} R\,\mathrm{d} \theta \\ &= \iint_S f(aR\cos(\theta),bR\sin(\theta))\left| abR(\cos^2(\theta) + \sin^2(\theta)) \right|\,\mathrm{d} R\,\mathrm{d} \theta \\ &= \iint_S f(aR\cos(\theta),bR\sin(\theta)) abR \, \mathrm{d} R\,\mathrm{d} \theta \quad (\text{假设 } a,b,R \ge 0) \end{aligned}

这里可以理解为坐标轴改变,即假设以(θ,R\theta,R)为新坐标轴,原先的x,yx,y就变成了x,y\partial x,\partial y的新坐标,新的面积即为他们的叉乘(即二阶行列式)


当函数f(x)f(x)满足axb,f(x)=f(a+bx)\forall a\leq x \leq b,f(x)=f(a+b-x)(即积分区间内函数对称)时,有

abxf(x)dx=ab(a+bx)f(x)dx=a+b2abf(x)dxe.g.0πxsin(x)dx=π20πsin(x)dx\begin{aligned} \int_a^b xf(x)\,\mathrm{d} x &=\int_a^b(a+b-x)f(x)\,\mathrm{d} x\\ &=\frac{a+b}{2}\int_a^b f(x)\,\mathrm{d} x \\ \text{e.g.} \quad \int_{0}^{\pi} x\sin(x)\,\mathrm{d} x &=\frac{\pi}{2}\int_{0}^\pi \sin(x)\,\mathrm{d} x \end{aligned}