0%

math_formula

数学公式渲染测试

ex=n=0xnn!=10!+x11!+x22!+x33!+e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \frac{1}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots

sinx=n=0(1)nx2n+1(2n+1)!=x11!x33!+x55!\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x^1}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots

cosx=n=0(1)nx2n(2n)!=10!x22!+x44!\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \frac{1}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots

ln(1+x)=n=1(1)n+1xnn=x11x22+x33\ln(1+x)=\sum_{n=1}^{\infty}(-1)^{n+1}\frac{x^n}{n}=\frac{x^1}{1}-\frac{x^2}{2}+\frac{x^3}{3}-\cdots

11x=n=0xn=x0+x1+x2+\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n=x^0+x^1+x^2+\cdots

arctanx=n=0(1)nx2n+12n+1=x11x33+x55\arctan x=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1}=\frac{x^1}{1}-\frac{x^3}{3}+\frac{x^5}{5}-\cdots

泰勒展开公式

f(x)k处展开:f(x)=n=0f(n)(k)n!(xk)nf(x)在k处展开:f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(k)}{n!}(x-k)^n

e.g.sinx=n=0sin(n)0n!xne.g. \sin x=\sum_{n=0}^{\infty}\frac{\sin^{(n)}0}{n!}x^n

4n+1阶导为1,4n+3阶导为-1,2n阶导为0.