0%

math_formula

数学公式渲染测试 $$ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \frac{1}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots $$

$$
\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x^1}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots
$$

$$
\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \frac{1}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots
$$

$$
\ln(1+x)=\sum_{n=1}^{\infty}(-1)^{n+1}\frac{x^n}{n}=\frac{x^1}{1}-\frac{x^2}{2}+\frac{x^3}{3}-\cdots
$$

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n=x^0+x^1+x^2+\cdots
$$

$$
\arctan x=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1}=\frac{x^1}{1}-\frac{x^3}{3}+\frac{x^5}{5}-\cdots
$$

泰勒展开公式

$$
f(x)在k处展开:f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(k)}{n!}(x-k)^n
$$

$$
e.g. \sin x=\sum_{n=0}^{\infty}\frac{\sin^{(n)}0}{n!}x^n
$$
4n+1阶导为1,4n+3阶导为-1,2n阶导为0.